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Abstract

Despite the wide publicity received by buffer overflow
attacks, the vast majority of today’s security vulnera-
bilities continue to be caused by memory errors, with
a significant shift away from stack-smashing exploits
to newer attacks such as heap overflows, integer over-
flows, and format-string attacks. While comprehensive
solutions have been developed to handle memory errors,
these solutions suffer from one or more of the follow-
ing problems: high overheads (often exceeding 100%),
incompatibility with legacy C code, and changes to the
memory model to use garbage collection. Address space
randomization (ASR) is a technique that avoids these
drawbacks, but existing techniques for ASR do not offer
a level of protection comparable to the above techniques.
In particular, attacks that exploit relative distances be-
tween memory objects aren’t tackled by existing tech-
niques. Moreover, these techniques are susceptible to
information leakage and brute-force attacks. To over-
come these limitations, we develop a new approach in
this paper that supports comprehensive randomization,
whereby the absolute locations of all (code and data) ob-
jects, as well as their relative distances are randomized.
We argue that this approach provides probabilistic pro-
tection against all memory error exploits, whether they
be known or novel. Our approach is implemented as a
fully automatic source-to-source transformation which
is compatible with legacy C code. The address-space
randomizations take place at load-time or runtime, so
the same copy of the binaries can be distributed to every-
one — this ensures compatibility with today’s software
distribution model. Experimental results demonstrate an
average runtime overhead of about 11%.

1 Introduction

A vast majority of security vulnerabilities reported in re-
cent years have been based on memory errors in C (and
C++) programs. In the past two years, the CERT Coor-
dination Center (now US-CERT) [5] has issued about 54
distinct advisories involving COTS software, of which

44 (over 80%) are due to memory errors. In spite of
the wide publicity received by buffer overflow attacks,
the fraction of vulnerabilities attributed to memory er-
rors has grown steadily in the past ten years or so.

Even as techniques such as “stack-guarding” [10]
have been developed to defeat the most common form of
exploit, namely stack-smashing, newer forms of attacks
continue to be discovered. The fraction of memory er-
ror exploits attributed to newer forms of attacks such as
heap overflows, integer overflows, and format-string at-
tacks have increased significantly in the past two years:
22 of the 44 CERT/CC advisories in the past two years
are attributed to these newer forms of attacks, as opposed
to 32 that were attributed to stack-smashing. (Note that
some advisories report multiple vulnerabilities together.)
This spate of new memory-related attacks suggests that
new ways to exploit memory errors will continue to be
discovered, and hence these errors will likely to be the
principal source of cyber attacks in the foreseeable fu-
ture.

We can, once for all, eliminate this seemingly end-
less source of vulnerabilities by adding complete mem-
ory error protection. Unfortunately, existing techniques
such as backwards-compatible bounds checking [17]
and its descendant CRED [26] are associated with high
overheads, sometimes exceeding 1000%. Lower over-
heads are reported in [32], but the overheads can still
be over 100% for some programs. Approaches such as
CCured [23] and Cyclone [16] can bring down this over-
head significantly, but aren’t compatible with legacy C
code. Nontrivial programming effort is often required
to port existing C programs so that they can work with
these tools. Precompiled libraries can pose additional
compatibility problems. Finally, these two approaches
rely on garbage collection instead of the explicit mem-
ory management model used in C programs, which can
pose another obstacle to their widespread acceptance.

Whereas the above approaches are concerned with
preventing all invalid memory accesses, we present an
approach with a more limited goal: it only seeks to en-
sure that the results of any invalid access are unpre-
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dictable. We show that this goal can be achieved with
a much lower runtime overhead of about 10%. Our ap-
proach avoids the compatibility issues mentioned above
with complete memory error protection techniques. Al-
though the protection provided by our approach is only
probabilistic, we show that for all known classes of at-
tacks, the odds of success are very small.

Our approach is based on the concept of address
obfuscation [4], whose goal is to obscure the location
of code and data objects that are resident in memory.
Several techniques have been developed to achieve such
obfuscation using randomization techniques [13, 24, 4,
31]. Although these techniques can provide protection
against most known types of memory error exploits,
they are vulnerable to several classes of attacks includ-
ing relative-address attacks, information leakage attacks,
and attacks on randomization [27]. More importantly,
they do not provide systematic protection against all
memory error exploits, which means that other attacks
on these techniques will likely continue to be discovered
in the future. In contrast, the approach developed in this
paper is aimed at protecting against all memory error ex-
ploits, whether they be known or unknown.

1.1 Overview of Approach

Our approach makes the memory locations of program
objects (including code as well as data objects) unpre-
dictable. This is achieved by randomizing the absolute
locations of all objects, as well as the relative distance
between any two objects.

Our implementation uses a source-to-source trans-
formation on C programs. Note that a particular ran-
domization isn’t hard-coded into the transformed code.
Instead, the transformation produces a self-randomizing
program: a program that randomizes itself each time it
is run, or continuously during runtime. This means that
the use of our approach doesn’t, in any way, change the
software distribution model that is prevalent today. Soft-
ware providers can continue to distribute identical copies
of program binaries to all users.

In our approach, the location of code objects is ran-
domized using binary transformation at load-time. Static
data objects are randomized at the beginning of program
execution. Stack objects are continuously randomized
throughout runtime. The key techniques used in achiev-
ing this randomization are outlined below.

• Randomizing stack-resident variables. Our approach
randomizes the locations of stack-allocated variables
continuously at runtime. It is based on:
– Shadow stack for buffer-type variables. A sepa-

rate stack is used for allocating arrays, as well as
structures whose addresses are taken. By sepa-
rating buffer-type variables, any overflow attacks
are prevented from corrupting information such as

return address or local variables that have pointer
types. Moreover, to randomize the effect of over-
flows from one buffer-type variable to the next, we
randomize the order of allocation of these buffer
variables in a different way for each call.

– Randomizing the base of activation records. To
obscure the location of other stack-resident data,
we randomize the base of the stack, as well as
introduce random-sized gaps between successive
stack frames.

• Randomizing static data. The location of each static
variable, as well the relative order of these variables,
is determined at the start of execution of the trans-
formed program. Our transformation converts ev-
ery access to a static variable to use an additional
level of indirection, e.g., an access v is converted into
something like (*v ptr). At the beginning of pro-
gram execution, the location of the variable v is deter-
mined, and this value is stored in v ptr. Note that, in
effect, the only static variables left in the transformed
program are the pointer variables such as v ptr. Al-
though these variables have predictable locations, at-
tacks on them are prevented by storing them in read-
only memory.

• Randomizing code. Code is randomized at the gran-
ularity of individual functions. Our technique asso-
ciates a function pointer f ptr with each function f,
and transforms every call into an indirect call using
f ptr. The order of different functions can now be
freely permuted in the binary, as long as f ptr is up-
dated to reflect the new location of the function body
for f. Although the location of f ptr variables are
predictable, attacks on them are prevented by write-
protecting them.

In addition to these steps, our approach randomizes the
base of the heap, gaps between heap allocations, and the
location of functions in shared libraries.

1.2 Impact of Comprehensive Randomization on
Memory Error Exploits

Intuitively, a memory error occurs in C programs when
the object accessed via a pointer expression is different
from the one intended by the programmer. The intended
object is called the referent of the pointer. Memory er-
rors can be classified into spatial and temporal errors:

I. A spatial error occurs when dereferencing a pointer
that is outside the bounds of its referent. It may be
caused as a result of:

(a) Dereferencing non-pointer data, e.g., a pointer
may be (incorrectly) assigned from an integer,
and dereferenced subsequently. Our randomiza-
tion makes the result of this dereferencing unpre-
dictable. The same integer value, when interpreted
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as a pointer, will reference different variables (or
code) for each execution of the program.

(b) Dereferencing uninitialized pointers. This case
differs from the first case only when a memory ob-
ject is reallocated. In the absence of our transfor-
mation, the contents of uninitialized pointers may
become predictable if the previous use of the same
memory location can be identified. For instance,
suppose that during an invocation of a function f,
its local variable v holds a valid pointer value. If
f is invoked immediately by its caller, then v will
continue to contain the same valid pointer even be-
fore its initialization. By introducing random gaps
in the stack, our approach changes the location of
v across different invocations of f, thereby mak-
ing the result of uninitialized pointer dereferences
unpredictable. A similar argument applies to real-
location within the heap, as our transformation in-
troduces random-sized gaps between heap objects.

(c) Valid pointers used with invalid pointer arith-
metic. The most common form of memory access
error, namely, out-of-bounds array access, falls in
this category. Since the relative distances between
memory objects are randomized in our approach,
one cannot determine the target object that will be
accessed as a result of invalid pointer arithmetic.

II. A temporal error occurs when dereferencing a
pointer whose referent no longer exists, i.e., it has
been freed previously. If the invalid access goes to an
object in free memory, then it causes no errors. But
if the memory has been reallocated, then temporal er-
rors allow the contents of the reallocated object to be
corrupted using the invalid pointer. Note that this case
is essentially the same as case I(b), in that the results
of such errors become predictable only when the pur-
pose of reuse of the memory location is predictable.
Since our transformation makes this unpredictable,
there is no way for attackers to predict the result of
memory dereferences involving temporal errors.

It may appear that temporal errors, and errors involving
uninitialized pointers, are an unlikely target for attack-
ers. In general, it may be hard to exploit such errors
if they involve heap objects, as heap allocations tend to
be somewhat unpredictable even in the absence of any
randomizations. However, stack allocations are highly
predictable, so these errors can be exploited in attacks
involving stack-allocated variables. Our randomization
technique reduces this likelihood.

We point out that previous techniques for ASR ad-
dress case I(a), but not the other three cases, and hence
the approach presented in this paper is the first random-
ization technique that has the potential to defend against
all memory exploits.

1.3 Benefits of Our Approach

Our approach provides the following benefits:

• Ease of use. Our approach is implemented as an au-
tomatic, source-to-source transformation, and is fully
compatible with legacy C code. It can interoperate
with preexisting (untransformed) libraries. Finally, it
doesn’t change the current model of distributing iden-
tical copies of software (on CDs or via downloads) to
all users.

• Comprehensive randomization. At runtime, the abso-
lute as well as relative distances between all memory-
resident objects are randomized. Hence the approach
presented in this paper can address the full range of
attacks that exploit memory errors. This contrasts
with previous ASR approaches [24, 4] that are vul-
nerable to relative-address-dependent attacks.

• Portability across multiple platforms. The vast ma-
jority of our randomizations are OS and architecture
independent. This factor eases portability of our ap-
proach to different platforms. Of particular signifi-
cance is the fact that our approach sidesteps the bi-
nary disassembly and rewriting problems that have
proven to be the Achilles’ heel of other techniques
that attempt transformations or randomization of bi-
nary code.

• Low runtime overhead. Our approach produces low
overheads, typically in the range of 10%. It is in-
teresting to note that, in spite of providing much
more comprehensive randomization, our overheads
are comparable to that of [4, 24].

• Ease of deployment. Our approach can be applied to
individual applications without requiring changes to
the OS kernel, system libraries or the software distri-
bution models. It empowers code producers and code
consumers to improve security of individual applica-
tions without requiring cooperation of the OS ven-
dors. This ability to deploy at an application granular-
ity provides an incremental deployment path, where
computers can gradually become more robust against
memory error exploits even when their operating sys-
tems aren’t upgraded for years.

1.4 Paper Organization

The rest of the paper is organized as follows. In Sec-
tion 2, we describe transformations to introduce various
randomizations. Section 3 describes our implementa-
tion of these transformations. Runtime overheads intro-
duced by our approach are discussed in Section 4. Sec-
tion 5 discusses the effectiveness of our approach against
different attacks, and analyzes the probability of mount-
ing successful attacks. Related work is covered in Sec-
tion 6. Finally, concluding remarks appear in Section 7.
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2 Transformation Approach

2.1 Static Data Transformations

One possible approach to randomize the location of
static data is to recompile the data into position-
independent code (PIC). This is the approach taken in
PaX ASLR [24], as well as in [4]. A drawback of this
approach is that it does not protect against relative ad-
dress attacks, e.g., an attack that overflows past the end
of a buffer to corrupt security-critical data that is close
to the buffer. Moreover, an approach that relies only on
changes to the base address is very vulnerable to infor-
mation leakage attacks, where an attacker may mount
a successful attack just by knowing the address of any
static variable, or the base address of the static area. Fi-
nally, on operating systems such as Linux, the base ad-
dress of different memory sections for any process is vis-
ible to any user with access to that system, and hence the
approach does not offer much protection from this class
of attacks.

For the reasons described above, our approach is
based on permuting the order of static variables at the
beginning of program execution. In particular, for each
static variable v, an associated (static) pointer variable
v ptr is introduced in the transformed program. All
accesses to the variable v are changed to reference
(*v ptr) in the transformed program. Thus, the only
static variables in the transformed program are these
v ptr variables, and the program no longer makes any
reference to the original variable names such as v.

At the beginning of program execution, control is
transferred to an initialization function introduced into
the transformed program. This function first allocates a
new region of memory to store the original static vari-
ables. This memory is allocated dynamically so that its
base address can be chosen randomly. Next, each static
variable v in the original program is allocated storage
within this region, and v ptr is updated to point to the
base of this storage.

To permute the order of variables, we proceed as
follows. If there are n static variables, a random number
generator is used to generate a number i between 1 and
n. Now, the ith variable is allocated first in the newly
allocated region. Now, there are n − 1 variables left,
and one can repeat the process by generating a random
number between 1 and n − 1 and so on.

Note that bounds-checking errors dominate among
memory errors. Such errors occur either due to the use of
an array subscript that is outside its bounds, or more gen-
erally, due to incorrect pointer arithmetic. For this rea-
son, our transformation separates buffer-type variables,
which can be sources of bounds-checking errors, from
other types of variables. Buffer-type variables include
all arrays and structures containing arrays. In addition,

they include any variable whose address is taken, since
it may be used in pointer arithmetic, which can in turn
lead to out-of-bounds access.

All buffer-type variables are allocated separately
from other variables. Inaccessible memory pages (nei-
ther readable nor writable) are introduced before and af-
ter the memory region containing buffer variables, so
that any buffer overflows from these variables cannot
corrupt non-buffer variables. The order of buffer-type
variables is randomized as mentioned above. In addi-
tion, inaccessible pages are also introduced periodically
within this region to limit the scope of buffer-to-buffer
overflows.

Finally, all of the v ptr variables are write-
protected. Note that the locations of these variables are
predictable, but this cannot be used as a basis for attacks
due to write-protection.

2.2 Code Transformations

As with static data, one way to randomize code loca-
tion is to generate PIC code, and map this at a randomly
chosen location at runtime. But this approach has sev-
eral drawbacks as mentioned before, so our approach in-
volves randomizing at a much finer granularity. Specif-
ically, our randomization technique works at the granu-
larity of functions. To achieve this, a function pointer
f ptr is associated with each function f. It is initialized
with the value of f. All references to f are replaced by
(*f ptr).

The above transformation avoids calls using abso-
lute addresses, thereby laying the foundation for relocat-
ing function bodies in the binary. But this is not enough:
there may still be jumps to absolute addresses in the
code. With C-compilers, such absolute jumps are intro-
duced while translating switch statements. In particular,
there may be a jump to location jumpTable[i], where
i is the value of the switch expression, and jumpTable
is a constant table constructed by the compiler. The ith
element of this table contains the address of the corre-
sponding case of the switch statement. To avoid abso-
lute address dependency introduced in this translation,
we transform a switch into a combination of if-then-else
and goto statements. Efficient lookup of case values can
be implemented using binary search, which will have
O(log N) time complexity. However, in our current im-
plementation we use sequential search. In theory, this
transformation can lead to decreased performance, but
we have not seen any significant effect due to this change
in most programs.

On a binary, the following actions are performed
to do the actual randomization. The entire code from
the executable is read. In addition, the location of func-
tions referenced by each f ptr variable is read from the
executable. Next, these functions are reordered in a ran-
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dom manner, using a procedure similar to that used for
randomizing the order of static variables. Random gaps
and inaccessible pages are inserted periodically during
this process in order to introduce further uncertainty in
code locations, and to provide additional protection. The
transformation ensures that these gaps do not increase
the overall space usage for the executable by more than a
specified parameter (which has the value of 100% in our
current implementation). This limit can be exceeded if
the original code size is smaller than a threshold (32K).

After relocating functions, the initializations of
f ptr variables are changed so as to reflect the new lo-
cation of each function. The transformed binary can then
be written back to the disk. Alternatively, the transfor-
mation could be done at load-time, but we have not im-
plemented this option so far.

It is well known that binary analysis and transfor-
mation are very hard problems. To ease this problem,
our transformation embeds “marker” elements, such as
an array of integers with predefined values, to surround
the function pointer table. These markers allow us to
quickly identify the table and perform the above trans-
formation, without having to rely on binary disassembly.

As a final step, the function pointer table needs to
be write-protected.

2.3 Stack Transformations

To change the base address of the stack, our transforma-
tion adds initialization code that subtracts a large random
number (of the order of 108) from the stack pointer. In
addition, all of the environment variables and command
line arguments are copied over, and the original contents
erased to avoid leaving any data that may be useful to
attackers (such as file names) at predictable locations.
Finally, the contents of the stack above the current stack
pointer value are write-protected. (An alternative to this
approach is to directly modify the base address of the
stack, but this would require changes to the OS kernel,
which we want to avoid. For instance, on Linux, this
requires changes to execve implementation.)

The above transformation changes the absolute lo-
cations of stack-resident objects, but has no effect on rel-
ative distances between objects. One possible approach
to randomize relative distances is to introduce an addi-
tional level of indirection, as was done for static vari-
ables. However, this approach will introduce high over-
heads for each function call. Therefore we apply this
approach only for buffer-type local variables. (Recall
that buffer-type variables also include those whose ad-
dress is explicitly or implicitly used in the program.)
Specifically, for each buffer-type variable, we introduce
a pointer variable to point to it, and then allocate the
buffer itself on a second stack called the shadow stack.
Consider a local variable declaration char buf[100]

within a function, func. This variable can be replaced
by a pointer with the following definition:

char (*buf ptr)[100]

On entry of func, memory for buf is allocated using:

buf ptr = shadow alloc(sizeof(char [100]))

Allocations of multiple buffers are performed in a ran-
dom order similar to static variables. Also, the allocator
function allocates extra memory of a random size (cur-
rently limited to a maximum of 30%) between buffers,
thereby creating random gaps between adjacent buffers.
Finally, all occurrences of buf in the body of func are
replaced with (*buf ptr).

Our transformation does not change the way other
types of local variables are allocated, so they get allo-
cated in the same order. However, since the addresses of
these variables never get taken, they cannot be involved
in attacks that exploit knowledge of relative distances
between variables. In particular, stack-smashing attacks
become impossible, as the return address is on the regu-
lar stack, whereas the buffer overflows can only corrupt
the shadow stack. In addition, attacks using absolute ad-
dresses of stack variables do not work, as the absolute
addresses are randomized by the (random) change to the
base address of the stack.

Note that function parameters may be buffer-type
variables. To eliminate the risk of overflowing them,
we copy all buffer-type parameters into local variables,
and use only the local variables from there on. Buffer
type parameters are never accessed in code, so there is
no possibility of memory errors involving them. (An
alternative to this approach is to ensure that no buffer-
type variables are passed by value. But this requires the
caller and callee code to be transformed simultaneously,
thereby potentially breaking separate compilation.)

As a final form of stack randomization, we intro-
duce random gaps between stack frames. This makes
it difficult to correlate the locations of local variables
across function invocations, thereby randomizing the ef-
fect of uninitialized pointer access and other temporal
errors. Before each function call, code is added to decre-
ments stack pointer by a small random value. After the
function call, this padding is removed. The padding size
is a random number generated at runtime, so it will vary
for each function invocation.

2.4 Heap Transformations

To modify the base address of the heap, code is added
to make a request for a large data block before the first
heap allocation request is made. The details of this step
will vary with the underlying malloc implementation,
and are described later on.

To randomize the relative distance between heap
objects, calls to malloc() are intercepted by a wrap-
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per function, and the size of the request increased by a
random amount, currently between 0% and 30%.

Additional randomizations are possible as well. For
instance, we can intercept calls to free, so that some of
the freed memory is not passed on to malloc, but simply
result in putting the the buffer in a temporary buffer. The
implementation of the malloc wrapper can be modified
to perform allocations from this buffer, instead of pass-
ing on the request to malloc. Since heap objects tend to
exhibit a significant degree of randomness naturally, we
have not experimented with this transformation.

2.5 DLL Transformations

Ideally, DLLs should be handled in the same way as
executable code: the order of functions should be ran-
domized, and the order of static variables within the
libraries should be randomized. However, DLLs are
shared across multiple programs. Randomization at the
granularity of functions, if performed at load time on
DLLs, will create copies of these DLLs, and thus rule
out sharing. To enable sharing, randomization can be
performed on the disk image of the library rather than
at load time. Such randomization has to be performed
periodically, e.g., at every restart of the system.

A second potential issue with DLLs is that their
source code may not be available. In this case, the base
address of the DLL can be randomized in a manner sim-
ilar to [24, 4]. However, this approach does not pro-
vide sufficient range of randomization on 32-bit archi-
tectures. In particular, with a page size of 4096 (= 212)
bytes on Linux, uncertainty in the base address of a li-
brary cannot be much larger than 216, which makes them
susceptible to brute-force attacks [27]. We address this
problem by a link-time transformation to prepend each
DLL with junk code of random size between 0 and page
size. The size of this junk code must be a multiple of 4,
so this approach increases the space of randomization to
216 ∗ 212/4 = 226.

2.6 Other Randomizations

Randomization of PLT and GOT. In a dynamically
linked ELF executable, calls to shared library functions
are resolved at runtime by the dynamic linker. The GOT
(global offset table) and PLT (procedure linkage table)
play crucial roles in resolution of library functions. The
GOT stores the addresses of external functions, and is
part of the data segment. The PLT, which is part of the
code segment, contains entries that call addresses stored
in the GOT.

From the point of view of an attacker looking to
access system functions such as execve, the PLT and
GOT provide “one-stop shopping,” by conveniently col-
lecting together the memory locations of all system
functions in one place. For this reason, they have be-

come a common target for attacks. For instance,

• if an attacker knows the absolute location of the PLT,
then she can determine the location within the PLT
that corresponds to the external function execve, and
use this address to overwrite a return address in a
stack-smashing attack. Note that this attack works
even if the locations of all functions in the executable
and libraries have been randomized

• if an attacker knows the absolute location of the GOT,
she can calculate the location corresponding to a
commonly used function such as the read system
call, and overwrite it with a pointer to attack code
injected by her. This would result in the execution of
attack code when the program performs a read.

It is therefore necessary to randomize the locations of
the PLT and GOT, as well as the relative order of en-
tries in these tables. However, since the GOT and PLT
are generated at link-time, we cannot control them using
source code transformation. One approach for protect-
ing the GOT is to use the eager linking option, and then
write-protect it at the beginning of the main program.
An alternative approach that uses lazy linking (which is
the default on Linux) is presented in [31].

The main complication in relocating the PLT is to
ensure that any references in the program code to PLT
entries be relocated. Normally, this can be very difficult,
because there is no way to determine through a static
analysis of a binary whether a constant value appearing
in the code refers to a function, or is simply an integer
constant. However, our transformation has already ad-
dressed this problem: every call to an entry e in the PLT
will actually be made using a function pointer e ptr in
the transformed code. As a result, we treat each entry
in the PLT as if it is a function, and relocate it freely, as
long as the e ptr is correctly updated.

Randomization of read-only data. The read-only data
section of a program’s executable consists of constant
variables and arrays whose contents are guaranteed not
to change when the program is being run. Attacks
which corrupt data cannot harm read-only data. How-
ever, if their location is predictable, then they may be
used in some attacks that need meaningful argument val-
ues, e.g., a typical return-to-libc attack will modify a re-
turn address on the stack to point to execve, and put
pointer arguments to execve on the stack. For this at-
tack to succeed, an attacker has to know the absolute
location of a string constant such as /bin/bash which
may exist in the read-only section.

Note that our approach already makes return-to-libc
attacks very difficult. Nevertheless, it is possible to make
it even more difficult by randomizing the location of po-
tential arguments in such attacks. This can be done by
introducing variables in the program to hold constant
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values, and then using the variables as arguments in-
stead of the constants directly. When this is done, our
approach will automatically relocate these constants.

3 Implementation

The main component of our implementation is a source
code transformer which uses CIL [22] as the front-end,
and Objective Caml as the implementation language.
CIL translates C code into a high-level intermediate
form which can be transformed and then emitted as C
source code, considerably facilitating the implementa-
tion of our transformation.

Our implementation also includes a small platform-
specific component that supports transformations in-
volving code and DLLs.

The implementation of these components are de-
scribed in greater detail below. Although the source-
code transformation is fairly easy to port to different
OSes, the description below refers specifically to our im-
plementation on an x86/Linux system.

3.1 Implementation of Static Data Transformations

Static data can be initialized or uninitialized. In an ELF
executable, the initialized data is stored in the .data
section, and the uninitialized data is stored in the .bss
section. For uninitialized data, there is no physical space
required in the executable. Instead, the executable only
records the total size of the .bss section. At load-time,
the specified amount of memory is allocated and initial-
ized with zeroes.

In the transformed program, initializations have to
be performed explicitly in the code. First, all newly in-
troduced pointer variables should be initialized to point
to the locations allocated to hold the values of the orig-
inal static variables. Next, these variables need to be
initialized. We illustrate these transformations through
an example:

int a = 1;
char b[100];
extern int c;

void f() {
while (a < 100) b[a] = a++;

}

We transform the above declarations, and also add an
initialization function to allocate memory for the vari-
ables defined in the source file as shown below:

int *a_ptr;
char (*b_ptr) [100];
extern int *c_ptr;

void __attribute__ ((constructor)) data_init(){

struct {
void *ptr;
unsigned int size;

BOOL is_buffer;
} alloc_info[2];

alloc_info[0].ptr = (void *) &a_ptr;
alloc_info[0].size = sizeof(int);
alloc_info[0].is_buffer = FALSE;
alloc_info[1].ptr = (void *) &b_ptr;
alloc_info[1].size = sizeof(char [100]);
alloc_info[1].is_buffer = TRUE;

static_alloc(alloc_info, 2);

(*a_ptr) = 1;
}

void f() {
while ((*a_ptr) < 100)

(*b_ptr)[(*a_ptr)] = (*a_ptr)++;
}

For the initialization function data init(), we
use constructor attribute so that it is invoked auto-
matically before execution enters main(). Each ele-
ment in the array alloc info stores information about
a single static variable, including the location of its
pointer variable, its size, etc. Memory allocation is done
by the function static alloc, which works as follows.
First, it allocates the required amount of memory by us-
ing a mmap. (Note that mmap allows its caller to specify
the start address and length of a segment, and this ca-
pability is used to randomize the base address of static
variables.) Second, it randomly permutes the order of
static variables specified in alloc info, and introduces
gaps and protected memory sections in-between some
variables. Finally, it zeroes out the memory allocated to
static variables. After the call to static alloc, code is
added to initialize those static variables that are explic-
itly initialized.

Other than the initialization step, the rest of the
transformation is very simple: replace the occurrence of
each static variable to use its associated pointer variable,
i.e., replace occurrence of v by (*v ptr).

The data segment might contain other sections in-
cluded by the static linker. Of these sections, .ctors,
.dtors and .got contain code pointers. Therefore we
need to protect these sections, or otherwise attackers can
corrupt them to hijack program control. The sections
.dtors and .ctors, which contain global constructors
and destructors, can be put into a read-only segment by
changing a linker script option.

Section .got contains GOT, whose randomization
was discussed in the previous section in the context of
randomization of PLT (See Section 2.6).

All of the v ptr variables are write-protected by
initialization code that is introduced into main. This
code first figures out the boundaries of the data segment,
and then uses the mprotect system call to apply the
write protection.

14th USENIX Security SymposiumUSENIX Association 261



www.manaraa.com
14th USENIX Security Symposium

3.2 Implementation of Code Transformations

Code transformation mainly involves converting direct
function calls into indirect ones. We store function
pointers in an array, and dereference elements from this
array to make the function calls. The details can be un-
derstood with an example. Consider a source file con-
taining following piece of code:

char *f();
void g(int a) { ... }
void h() {

char *str;
char *(*fptr)();
...
fptr = &f;
str = (*fptr)();
g(10);

}

The above code will be transformed as follows:

void *const func_ptrs[] =
{M1, M2, M3, M4, (void *)&f, (void *)&g,
M5, M6, M7, M8};

char *f();
void g(int a) { ... }
void h() {

char *str;
char *(*fptr)();
...
fptr = (char *(*)())func_ptrs[4];
str = (*fptr)();
(*((void (*)(int)) (func_ptrs[5])))(10);

}

The function pointer array in each source file con-
tains locations of functions used in that file. Due to the
const modifier, the array becomes part of the .rodata
section in the code segment of the corresponding ELF
executable, and is hence write-protected.

The func ptrs array is bounded on each end with
a distinctive, 128-bit pattern that is recorded in the
marker variables M1 through M8. This pattern is assumed
to be unique in the binary, and can be easily identi-
fied when scanning the binary. These markers simplify
binary transformations, as we no longer need to disas-
semble the binary for the purpose of function-reordering
transformation. Instead, the original locations of func-
tions can be identified from the contents of this array.
By sorting the array elements, we can identify the be-
ginning as well as the end of each function. (The end
of a function is assumed to just precede the beginning
of the next function in the sorted array.) Now, the bi-
nary transformation simply needs to randomly reorder
function bodies, and change the content of the func ptr
array to point to these new locations. We adapted the
LEEL binary-editing tool [33] for performing this code
transformation.

In our current implementation, we do not reorder
functions at load time. Instead, the same effect is

achieved by modifying the executable periodically.

3.3 Implementation of Stack Transformations

In our current implementation, the base of the stack
is randomized by decrementing a large number from
the stack pointer value. This is done in the
libc start main routine, and hence happens before

the invocation of main. Other stack-related transforma-
tions are implemented using a source-code transforma-
tion. Transformation of buffer-type local variables is
performed in a manner similar to that of static variables.
The only difference is that their memory is allocated on
the shadow stack.

Introduction of random-sized gaps between stack
frames is performed using the alloca function, which
is converted into inline assembly code by gcc. There
are two choices on where this function is invoked: (a)
immediately before calling a function, (b) immediately
after calling a function, i.e., at the beginning of the called
function. Note that option (b) is weaker than option (a)
in a case where a function f is called repeatedly within
a loop. With (a), the beginning of the stack frame will
differ for each call of f . With (b), all calls to f made
within this loop will have the same base address. Never-
theless, our implementation uses option (b), as it works
better with some of the compiler optimizations.

Handling setjmp/longjmp. The implementation of
shadow stack needs to consider subroutines such as
setjmp() and longjmp(). A call to setjmp()
stores the program context which mainly includes the
stack pointer, the frame pointer and the program counter.
A subsequent call to longjmp() restores the program
context and the control is transferred to the location of
the setjmp() call. To reflect the change in the pro-
gram context, the shadow stack needs to be modified.
Specifically, the top of shadow stack needs to be ad-
justed to reflect the longjmp. This is accomplished by
storing the top of the shadow stack as a local variable
in the regular stack and restoring it at the point of func-
tion return. As a result, the top of shadow stack will be
properly positioned before the first allocation following
the longjmp. (Note that we do not need to change the
implementation of setjmp or longjmp.)

3.4 Implementation of Heap Transformations.

Heap-related transformations may have to be imple-
mented differently, depending on how the underlying
heap is implemented. For instance, suppose that a heap
implementation allocates as much as twice the requested
memory size. In this case, randomly increasing a request
by 30% will not have much effect on many memory al-
location requests. Thus, some aspects of randomization
have to be matched to the underlying heap implementa-
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Program Workload

Apache-1.3.33 Webstone 2.5, client connected over 100Mbps network.
sshd-OpenSSH 3.5p1 Run a set of commands from ssh client.

wu-ftpd-2.8.0 Run a set of different ftp commands.
bison-1.35 Parse C++ grammar file.

grep-2.0 Search a pattern in files of combined size 108MB.
bc-1.06 Find factorial of 600.
tar-1.12 Create a tar file of a directory of size 141MB.

patch-2.5.4 Apply a 2MB patch-file on a 9MB file.
enscript-1.6.4 Convert a 5.5MB text file into a postscript file.

ctags-5.4 Generate tag file of 6280 C source code files with total 17511 lines.
gzip-1.2.4 Compress a 12 MB file.

Figure 1: Test programs and workloads

tion.
For randomizing the base of heap, we could make a

dummy malloc() call at the beginning of program exe-
cution, requesting a big chunk of memory. However, this
would not work for malloc() as implemented in GNU
libc: for any chunk larger than 4K, GNU malloc re-
turns a separate memory region created using the mmap
system call, and hence this request doesn’t have any im-
pact on the locations returned by subsequent malloc’s.

We note that malloc uses the brk system call to
allocate heap memory. This call simply changes the end
of the data segment. Subsequent requests to malloc
are allocated from the newly extended region of mem-
ory. In our implementation, a call to brk is made be-
fore any malloc request is processed. As a result, lo-
cations returned by subsequent malloc requests will be
changed by the amount of memory requested by the pre-
vious brk. The length of the extension is a random num-
ber between 0 and 108. The extended memory is write-
protected using the mprotect system call.

In addition, each malloc request is increased by a
random factor as described earlier. This change is per-
formed in a wrapper to malloc that is incorporated in
the modified C library used by our implementation.

3.5 Implementation of DLL transformations

In our current implementation, DLL transformations are
limited to changing their base addresses. Other transfor-
mations aimed at relative address randomization are not
performed currently.

Base address randomization is performed at load-
time and link-time. Load-time randomization has been
implemented by modifying the dynamic linker ld.so
so that it ignores the “preferred address” specified in a
DLL, and maps it at a random location. Note that there
is a boot-strapping problem with randomizing ld.so it-
self. To handle this problem, our implementation modi-
fies the preferred location of ld.so, which is honored by
the operating system loader. This approach negatively

impacts the ability to share ld.so among executables,
but this does not seem to pose a significant performance
problem due to the relatively small size and infrequent
use (except during process initialization) of this library.

Link-time transformation is used to address the lim-
ited range of randomization that can be achieved at load-
time. In particular, the load-time addresses are limited
to be multiples of page size. To provide finer granu-
larity changes to the base address, our implementation
uses the “-r” option of ld to generate a relocatable object
file for the DLL. Periodically, the relocatable version of
the DLL is linked with random-sized (between 0 and 4K
bytes) junk code to produce a new DLL that is used by
all programs. We envision that this relinking step will be
performed periodically, or perhaps once on every system
restart.

Note that this approach completely avoids distri-
bution of source code and (expensive) recompilation of
libraries. Moreover, it allows sharing of library code
across multiple processes.

3.6 Other Implementation Issues

Random number generation. Across all the transfor-
mations, code for generation of random numbers is re-
quired to randomize either the base addresses or the rel-
ative distances. For efficiency, we use a pseudo-random
numbers rather than cryptographically random numbers.
The pseudo-random number generator is seeded with a
real random number read from /dev/urandom.

Debugging support. Our transformation provides sup-
port for some of the most commonly used debugging
features such as printing a stack trace. Note that no
transformations are made to normal (i.e., non-buffer)
stack variables. Symbol table information is appro-
priately updated after code rewriting transformations.
Moreover, conventions regarding stack contents are pre-
served. These factors enable off-the-shelf debuggers to
produce stack traces on transformed executables.
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Degradation (%)
#clients Connection Response

Rate Time

2-clients 1 0
16-clients 0 0
30-clients 0 1

Figure 2: Performance overhead for Apache.

Unfortunately, it isn’t easy to smoothly handle
some aspects of transformation for debugging purposes.
Specifically, note that accesses to global variables (and
buffer-type local variables) are made using an additional
level of indirection in the transformed code. A person
attempting to debug a transformed program needs to be
aware of this. In particular, if a line in the source code
accesses a variable v, he should know that he needs to
examine (*v ptr) to get the contents of v in the un-
transformed program. Although this may seem to be a
burden, we point out that our randomizing transforma-
tion is meant to be used only in the final versions of code
that are shipped, and not in debugging versions.

4 Performance Results

We have collected data on the performance impact of the
randomizing transformations. The transformations were
divided into the following categories, and their impact
studied separately.

• Stack: transformations which randomize the stack
base, move buffer-type variables into the shadow
stack, and introduce gaps between stack frames.

• Static data: transformations which randomize loca-
tions of static data.

• Code: transformations which reorder functions.

• All: all of the above, plus randomizing transforma-
tions on heap and DLLs.

Figure 1 shows the test programs and their work-
loads. Figure 3 shows performance overheads due to
each of the above categories of transformations. The
original programs and the transformed programs were
compiled using gcc version 3.2.2 with -O2 optimiza-
tion, and executed on a desktop running Red Hat Linux
9.0 with 1.7GHz Pentium IV processor, and 512MB
RAM. Average execution (system + user) time was com-
puted over 10 runs.

For Apache server, we studied its performance sep-
arately after applying all the transformations. To mea-
sure performance of the Apache server accurately, heavy
traffic from clients is required. We generated this using
WebStone [30], a standard web server benchmark. We
used version 2.5 of this benchmark, and ran it on a sep-
arate computer that was connected to the server through

Orig. % Overheads
Program CPU Stack Static Code All

time

grep 0.33 0 0 0 2
tar 1.06 2 2 1 4

patch 0.39 2 0 0 4
wu-ftpd 0.98 2 0 6 9

bc 5.33 7 1 2 9
enscript 1.44 8 3 0 10

bison 0.65 4 0 7 12
gzip 2.32 6 9 4 17
sshd 3.77 6 10 2 19

ctags 9.46 10 3 8 23

Avg. Overhead 5 3 3 11

Figure 3: Performance overheads for other programs.

Program %age of variable accesses
Local Global

(non-buffer) (buffer) (static)

grep 99.9 0.004 0.1
bc 99.3 0.047 0.6

tar 96.5 0.247 3.2
patch 91.8 1.958 6.2

enscript 90.5 0.954 8.5
bison 88.2 0.400 10.9
ctags 72.9 0.186 26.9
gzip 59.2 0.018 40.7

Figure 4: Dynamic profile information for data access

a 100Mbps network. We ran the benchmark with two,
sixteen and thirty clients. In the experiments, the clients
were simulated to access the web server concurrently,
randomly fetching html files of size varying from 500
bytes to 5MB. The benchmark was run for a duration
of 30 minutes, and the results were averaged across ten
such runs. Results were finally rounded off to the nearest
integral values.

We analyzed the performance impact further by
studying the execution profile of the programs. For this,
we instrumented programs to collect additional statistics
on memory accesses made by the transformed program.
Specifically, the instrumentation counts the total number
of accesses made to local variables, variables on shadow
stack, global variables and so on.

Figure 4 shows the dynamic profile information.
(We did not consider servers in this analysis due to the
difficulties involved in accurately measuring their run-
times.) From this result, we see that for most programs,
the vast majority of memory accesses are to local vari-
ables. Our transformation doesn’t introduce any over-
heads for local variables, which explains the low over-
heads for most programs in Figure 3. Higher overheads
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Program # calls calls/ Shadow
sec. stack

allocations
×106 ×106 per call

grep 0.02 0.06 0.412
tar 0.43 0.41 0.140

bison 2.69 4.11 0.103
bc 22.56 4.24 0.080

enscript 9.62 6.68 0.070
patch 3.79 9.75 0.017
gzip 26.72 11.52 0.000
ctags 251.63 26.60 0.006

Figure 5: Dynamic profile information for function calls

are associated with programs that perform a significant
number of global variable accesses, where an additional
memory access is necessitated by our transformation.

A second source of overhead is determined by the
number of function calls made by a program. This in-
cludes the overhead due to the additional level of in-
direction for making function calls, the number of al-
locations made on shadow stack, and the introduction
of inter-stack-frame gap. To analyze this overhead, we
instrumented the transformed programs to collect num-
ber of function calls and number of shadow stack allo-
cations. The results, shown in Figure 5, illustrate that
programs that make a large number of function calls per
second, e.g., ctags and gzip incur higher overheads.
Surprisingly, bison also incurs high overheads despite
making small number of function calls per second. So
we analyzed bison’s code, and found that it contains
several big switch statements. This could be the main
reason behind the high overheads, because our current
implementation performs sequential lookup for the case
values. However, with binary search based implementa-
tion, we should be able to get better performance.

We point out that the profile information cannot
fully explain all of the variations in overheads, since it
does not take into account some of the factors involved,
such as compiler optimizations and the effect of cache
hits (and misses) on the additional pointer dereferences
introduced in the transformed program. Nevertheless,
the profile information provides a broad indication of the
likely performance overheads due to each program.

5 Effectiveness

Effectiveness can be evaluated experimentally or an-
alytically. Experimental evaluation involves running
a set of well-known exploits (such as those reported
on Securityfocus.com) against vulnerable programs,
and showing that our transformation stops these exploits.
We have not carried out a detailed experimental evalu-

ation of effectiveness because today’s attacks are quite
limited, and do not exercise our transformation at all.
In particular, they are all based on a detailed knowledge
of program memory layout. We have manually verified
that our transformation changes the memory locations
of global variables, local variables, heap-allocated data
and functions for each of the programs discussed in the
previous section. It follows from this that none of the
existing buffer overflow attacks will work on the trans-
formed programs.

In contrast with the limitations of an experimental
approach, an analytical approach can be based on novel
attack strategies that haven’t been seen before. More-
over, it can provide a measure of protection (in terms of
the probability of a successful attack), rather than sim-
ply providing an “yes” or “no” answer. For this reason,
we rely primarily on an analytical approach in this sec-
tion. We first analyze memory error exploits in general,
and then discuss attacks that are specifically targeted at
randomization.

5.1 Memory Error Exploits

All known memory error exploits are based on corrupt-
ing some data in the writable memory of a process.
These exploits can be further subdivided based on the
attack mechanism and the attack effect. The primary at-
tack mechanisms known today are:

• Buffer overflows. These can be further subdivided,
based on the memory region affected: namely, stack,
heap or static area overflows. We note that integer
overflows also fall into this category.

• Format string vulnerabilities.

Attack effects can be subdivided into:

• Non-pointer corruption. This category includes at-
tacks that target security-critical data, e.g., a variable
holding the name of a file executed by a program.

• Pointer corruption. Attacks in this category are based
on overwriting data or code pointers. In the for-
mer case, the overwritten value may point to injected
data that is provided by the attacker, or existing data
within the program memory. In the latter case, the
overwritten value may correspond to injected code
that is provided by the attacker, or existing code
within the process memory.

Given a specific vulnerability V , the probability of
its successful exploitation is given by P (Owr)∗P (Eff),
where P (Owr) denotes the probability that V can be
used to overwrite a specific data item of interest to the
attacker, and P (Eff) denotes the probability that the
overwritten data will have the effect intended by the at-
tacker. In arriving at this formula, we make either of the
following assumptions:

• (a) the program is re-randomized after each failed at-
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tack. This happens if the failure of the effect causes
the victim process to crash, (say, due to a memory
protection fault), and it has to be explicitly restarted.

• (b) the attacker cannot distinguish between the fail-
ure of the overwrite step from the failure of the effect.
This can happen if (1) the overwrite step corrupts crit-
ical data that causes an immediate crash, making it in-
distinguishable from a case where target data is suc-
cessfully overwritten, but has an incorrect value that
causes the program to crash, or (2) the program in-
corporates error-handling or defense mechanisms that
explicitly masks the difference between the two steps.

Note that (a) does not hold for typical server programs
that spawn children to handle requests, but (b) may hold.
If neither of them hold, then the probability of a success-
ful attack is given by min(P (Owr), P (Eff)).

5.1.1 Estimating P (Owr)

We estimate P (Owr) separately for each attack type.

5.1.1.1 Buffer overflows

Stack buffer overflows. These overflows typically tar-
get the return address, saved base pointer or other
pointer-type local variables. Note that the shadow stack
transformation makes these attacks impossible, since all
buffer-type variables are on the shadow stack, while the
target data is on a different stack.

Attacks that corrupt one buffer-type variable by
overflowing the previous one are possible, but unlikely.
As shown by our implementation results, very few
buffer-type variables are allocated on the stack. More-
over, it is unusual for these buffers to contain pointers
(or other security-critical data) targeted by an attacker.

Static buffer overflows. As in the case of stack over-
flows, the likely targets are simple pointer-type vari-
ables. However, such variables have been separated by
our transformation from buffer-type variables, and hence
they cannot be attacked.

For attacks that use overflow from one buffer to the
next, the randomization introduced by our transforma-
tion makes it difficult to predict the target that will be
corrupted by the attack. Moreover, unwritable pages
have been introduced periodically in-between buffer-
type static variables, and these will completely rule out
some overflows. To estimate the probability of success-
ful attacks, let M denote the maximum size of a buffer
overflow, and S denote the granularity at which inac-
cessible pages are introduced between buffer variables.
Then the maximum size of a useful attack is min(M, S).
Let N denote the total size of memory allocated for
static variables. The probability that the attack success-
fully overwrites a data item intended by the attacker is
given by min(M, S)/N . With nominal values of 4KB

for the numerator and 1MB for the denominator, the
likelihood of success is about 0.004.

Heap overflows. In general, heap allocations are non-
deterministic, so it is hard to predict the effect of over-
flows from one heap block to the next. This un-
predictability is further increased by our transforma-
tion to randomly increase the sizes of heap allocation
requests. However, there exist control data in heap
blocks, and these can be more easily and reliably tar-
geted. For instance, heap overflow attacks generally tar-
get two pointer-valued variables that are used to chain
free blocks together, and appear at their beginning.

The transformation to randomly increase malloc
requests makes it harder to predict the start address of
the next heap block, or its allocation state. However,
the first difficulty can be easily overcome by writing al-
ternating copies of the target address and value many
times, which ensures that the control data will be over-
written with 50% probability. We believe that the uncer-
tainty on allocation state doesn’t significantly decrease
the probability of a successful attack, and hence we con-
clude that our randomizations do not significantly de-
crease P (Owr). However, as discussed below, P (Eff)
is very low for such attacks.

5.1.1.2 Format string attacks. These attacks exploit
the (obscure) "%n" format specifier. The specifier needs
an argument that indicates the address into which the
printf-family of functions will store the number of char-
acters that have been printed. This address is specified
by the attacker as part of the attack string. Note that
in the transformed program, the argument correspond-
ing to the "%n" format specifier will be taken from the
main stack, whereas the attack string will correspond to
a buffer-type variable, and be held on the shadow stack
(or the heap or in a global variable). As a result, there
is no way for the attacker to directly control the ad-
dress into which printf-family of functions will write,
and hence the usual form of format-string attack will fail.

It is possible, however, that some useful data
pointers may be on the stack, and they could be used as
the target of writes. The likelihood of finding such data
pointers on the stack is relatively low, but even when
they do exist, the inter-stack frame gaps of the order of
28 bytes reduces the likelihood of successful attacks to
4/28 = 0.016. This factor can be further decreased by
increasing the size of inter-frame gaps in functions that
call printf-family of functions.

In summary, the approach described in this paper sig-
nificantly reduces the success probability of most likely
attack mechanisms, which include (a) overflows from
stack-allocated buffers to corrupt return address or other
pointer-type data on the stack, (b) overflows from static
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variable to another, and (c) format-string attacks. This
should be contrasted with previous ASR techniques that
have no effect at all on P (Owr). Their preventive abil-
ity is based entirely on reducing P (Eff) discussed in the
next section.

5.1.2 Estimating P (Eff)

5.1.2.1 Corruption of non-pointer data. This class of
attacks target security-critical data such as user-ids and
file names used by an application. With our technique,
as well as previous ASR techniques, it can be seen that
P (Eff) = 1, as they have no bearing on the inter-
pretation of non-pointer data. The most likely location
of such security-critical data is the static area, where
our approach provides protection in the form of a small
P (Owr). This contrasts with previous ASR approaches
that provide no protection from this class of attacks.

5.1.2.2 Pointer corruption attacks.

Corruption with pointer to existing data. The probabil-
ity of correctly guessing the absolute address of any data
object is determined primarily by the amount of random-
ization in the base addresses of different data areas. This
quantity can be in the range of 227, but since the objects
will likely be aligned on a 4-byte boundary, the probabil-
ity of successfully guessing the address of a data object
is in the range of 2−25.

Corruption with pointer to injected data. Guessing the
address of some buffer that holds attacker-provided data
is no easier than guessing the address of existing data
objects. However, the odds of success can be improved
by repeating the attack data many times over. If it is
repeated k times, then the odds of success is given by
k × 2−25. If we assume that the attack data is 16 bytes
and the size of the overflow is limited to 4K , then k has
the value of 28, and P (Eff) is 2−17.

Corruption with pointer to existing code. The proba-
bility of correctly guessing the absolute address of any
code object is determined primarily by the amount of
randomization in the base addresses of different code
areas. In our current implementation, the uncertainty
in the locations of functions within the executable is
216/4 = 214. We have already argued that the random-
ization in the base address of DLLs can be as high as
2−26, so P (Eff) is bounded by 2−14.

This probability can be decreased by performing
code randomizations at load-time. When code random-
izations are performed on disk images, the amount of
“gaps” introduced between functions is kept low (on the
order of 64K in the above calculation), so as to avoid
large increases in file sizes. When the randomization is
performed in main memory, the space of randomization
can be much larger, say, 128MB, thereby reducing the

probability of successful attacks to 2−25.

Corruption with pointer to injected code. Code can be
injected only in data areas, and it does not have any
alignment requirements (on x86 architectures). There-
fore, the probability of guessing the address of the in-
jected code is 2−27. The attacker can increase the suc-
cess probability by using a large NOP-padding before
the attack code. If a padding of the order of 4KB is used,
then P (Eff) becomes 4K × 2−27 = 2−15.

5.2 Attacks Targeting ASR

Previous ASR approaches were vulnerable to the classes
of attacks described below. We describe how the ap-
proach presented in this paper fares against them.

5.2.1 Information leakage attacks

Programs may contain vulnerabilities that allow an at-
tacker to “read” the memory of a victim process. For
instance, the program may have a format string vulner-
ability such that the vulnerable code prints into a buffer
that is sent back to the attacker. (Such vulnerabilities are
rare, as pointed out in [27].) Armed with this vulnera-
bility, the attacker can send a format string such as "%x
%x %x %x", which will print the values of 4 words near
the top of the stack at the point of the vulnerability. If
some of these words are known to point to specific pro-
gram objects, e.g., a function in the executable, then the
attacker knows the locations of these objects.

We distinguish between two kinds of information
leakage vulnerabilities: chosen pointer leakage and ran-
dom pointer leakage. In the former case, the attacker is
able to select the object whose address is leaked. In this
case, the attacker can use this address to overwrite a vul-
nerable pointer, thereby increasing P (Eff) to 1. With
random pointer leakage, the attacker knows the location
of some object in memory, but not the one of interest to
him. Since relative address randomization makes it im-
possible in general to guess the location of one memory
object from the location of another memory object, ran-
dom pointer leakages don’t have the effect of increasing
P (Eff) significantly.

For both types of leakages, note that the attacker
still has to successfully exploit an overflow vulnerability.
The probability of success P (Owr) for this stage was
previously discussed.

The specific case of format-string information
leakage vulnerability lies somewhere between random
pointer leakage and chosen pointer leakage. Thus, the
probability of mounting a successful attack based on this
vulnerability is bounded by P (Owr).

14th USENIX Security SymposiumUSENIX Association 267



www.manaraa.com
14th USENIX Security Symposium

5.2.2 Brute force and guessing attacks

Apache and similar server programs pose a challenge
for address randomization techniques, as they present an
attacker with many simultaneous child processes to at-
tack, and rapidly re-spawn processes which crash due to
bad guesses by the attacker. This renders them vulnera-
ble to attacks in which many guesses are attempted in a
short period of time. In [27], these properties were ex-
ploited to successfully attack a typical Apache configu-
ration within a few minutes. This attack doesn’t work
with our approach, as it relies on stack smashing. A
somewhat similar attack could be mounted by exploit-
ing some other vulnerability (e.g., heap overflow) and
making repeated attempts to guess the address of some
existing code. As discussed earlier, this can be done with
a probability between 2−14 to 2−26. However, the tech-
nique used in [27] for passing arguments to this code
won’t work with heap overflows.

5.2.3 Partial pointer overwrites

Partial pointer overwrites replace only the lower byte(s)
of a pointer, effectively adding a delta to the original
pointer value. These are made possible by off-by-one
vulnerabilities, where the vulnerable code checks the
length of the buffer, but contains an error that underesti-
mates the size of buffer needed by 1.

These attacks are particularly effective against ran-
domization schemes which only randomize the base ad-
dress of each program segment and preserve the memory
layout. By scrambling the program layout, our approach
negates any advantage of a partial overwrite over a full
overwrite.

6 Related Work

Runtime Guarding These techniques transform a
program to prevent corruption of return addresses or
other specific values. Stackguard [10] provides a gcc
patch to generate code that places canary values around
the return address at runtime, so that any overflow which
overwrites the return address will also modify the ca-
nary value, enabling the overflow to be detected. Stack-
Shield [2] and RAD [7] provide similar protection, but
keep a separate copy of the return address instead of us-
ing canary values. Libsafe and Libverify [2] are dynam-
ically loaded libraries which provide protection for the
return address without requiring recompilation. ProPo-
lice [12] further improves these approaches to protect
pointers among local variables. FormatGuard [8] trans-
forms source code to provide protection from format-
string attacks.

The PointGuard [9] approach randomizes (“en-
crypts”) stored pointer values. It provides protection
against pointer-related attacks, but not against attacks

that modify non-pointer data. Moreover, the approach
does not consider features of the C language, such as
type casts between pointers and integers, and aliasing
of pointer-valued variables with variables of other types.
As a result, PointGuard may break such programs.

Runtime Bounds and Pointer Checking Several
techniques [20, 1, 28, 17, 15, 18, 23, 26, 32] have been
developed to prevent buffer overflows and related mem-
ory errors by checking every memory access. These
techniques currently suffer from one or more of the fol-
lowing drawbacks: runtime overheads that can often
be over 100%, incomaptibility with legacy C-code, and
changes to the memory model or pointer semantics.

Compile-Time Analysis Techniques These tech-
niques [14, 25, 29, 11, 21] analyze a program’s source
code to detect potential array and pointer access errors.
Although useful for debugging, they are not very prac-
tical since they suffer from high false alarm rates, and
often do not scale to large programs.

Randomizing Code Transformations Address ran-
domization is an instance of the broader idea of intro-
ducing diversity in nonfunctional aspects of software, an
idea suggested by Forrest, Somayaji, and Ackley [13].
Recent works have applied it to randomization of ad-
dress space [24, 4, 31], operating system functions [6],
and instruction sets [19, 3]. As compared to instruc-
tion set randomization, which offers protection from in-
jected code attacks, address space randomization offers
broader protection – it can defend against existing code
attacks, as well as attacks that corrupt security-critical
data.

Previous approaches in address space randomiza-
tion were focused only on randomizing the base address
of different sections of memory. In contrast, the ap-
proach developed in this paper implements randomiza-
tion at a much finer granularity, achieving relative as
well as absolute address randomization. Moreover, it
makes certain types of buffer overflows impossible. In-
terestingly, our implementation can achieve all of this,
while incurring overheads that are about the same as the
previous techniques [4].

7 Conclusion

Address space randomization (ASR) is an technique
which provides broad protection from memory error ex-
ploits in C and C++ programs. However, previous im-
plementations of ASR have provided a relatively coarse
granularity of randomization, with many program ob-
jects sharing the same address mapping, so that the
relative distance between any two objects is likely to
be the same in both the original and randomized pro-
gram. This leaves the randomized program vulnerable
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to guessing, partial pointer overwrite and information
leakage attacks, as well as attacks that modify security-
critical data without corrupting any pointers. To address
this weakness, we presented a new approach in this pa-
per that performs randomization at the granularity of in-
dividual program objects — so that each function, static
variable, and local variable has a uniquely randomized
address, and the relative distances between objects are
highly unpredictable. Our approach is implemented us-
ing a source-to-source transformation that produces a
self-randomizing program, which randomizes its mem-
ory layout at load-time and runtime. This randomiza-
tion makes it very difficult for memory error exploits to
succeed. We presented an analysis to show that our ap-
proach can provide protection against known as well as
unknown types of memory error exploits. We also an-
alyzed the success probabilities of typical attacks, and
showed that they are all very small. Our experimen-
tal results establish that comprehensive address space
randomization can be achieved with overheads that are
comparable to coarser forms of ASR. Furthermore, the
approach presented in this paper is portable, compatible
with legacy code, and supports basic debugging capa-
bilities that will likely be needed in software deployed
in the field. Finally, it can be selectively applied to
security-critical applications to achieve an increase in
overall system security even in the absence of security
updates to the underlying operating system.

Acknowledgments

We are thankful to Wei Xu for his insightful comments
on the implementation issues, and the anonymous re-
viewers for their comments and suggestions.

This research is supported in by an ONR grant
N000140110967 and NSF grants CCR-0098154 and
CCR-0208877. Sekar’s work was also partly supported
by DARPA through an AFRL contract FA8750-04-0244.

References
[1] T. M. Austin, S. E. Breach, and G. S. Sohi. Efficient de-

tection of all pointer and array access errors. In ACM
SIGPLAN Conference on Programming Language Design
and Implementation, pages 290–301, Orlando, Florida,
20–24 June 1994.

[2] A. Baratloo, N. Singh, and T. Tsai. Transparent run-
time defense against stack smashing attacks. In USENIX
Annual Technical Conference, pages 251–262, Berkeley,
CA, June 2000.

[3] E. G. Barrantes, D. H. Ackley, S. Forrest, T. S. Palmer,
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